Modelling Dynamic 3D Human-Object Interactions From Capture to Synthesis

PhD Defense

Omid Taheri July 4, 2024

Committee

Prof. Dr. Gerard Pons-Moll Prof. Dr. Michael J. Black Prof. Dr. Angela Dai Prof. Dr. Andreas Geiger

Modelling Humans

Intro

Long term goal in Computer Vision/Graphics -> Modelling Virtual Humans

Movies 🛛

Games [2]

Animations [3]

Virtual World

Things are going virtual:

- AR/VR
- Telepresence
- Metaverse
- Embodied assistants (ChatGPT)

Virtual world \rightarrow Virtual humans

- Demand for modelling virtual humans
- Immersive experience \rightarrow Realistic humans

Socializing II

A Fundamental Aspect of Humans

A Fundamental Aspect of Humans

Human Motion

Our motions are:

- At the heart of everything we do
- Complicated and rich
- Fast and diverse

Used for:

- Communication
- Interaction
- Emotion
- Navigation

pexels.com/video/[a-woman-painting-using-a-paintbrush-5670466] - [dinner-meal-breakfast-kitchen-4296854] - [hands-music-musician-piano-4088191] [a-person-working-on-a-computer-and-writing-notes-on-pieces-of-papers-3196061] - [making-a-latte-4929541] - [mixing-sugar-and-egg-6138113] - [person-working-on-his-laptop-1851768]

The Role of Hands

Primary tool for interaction/manipulation

- \circ Dexterous
- Do delicate or rough motions
- \circ $\,$ Sense hot or cold $\,$
- \circ Feel soft or rough surfaces
- o Make gestures
- 70% of daily activities

-

pexels.com/video/[a-woman-painting-using-a-paintbrush-5670466] - [dinner-meal-breakfast-kitchen-4296854] - [hands-music-musician-piano-4088191] [a-person-working-on-a-computer-and-writing-notes-on-pieces-of-papers-3196061] – [making-a-latte-4929541] – [mixing-sugar-and-egg-6138113] – [mixing-suga

The Role of Hands

A day without hands - try at home!

- Immanuel Kant

The Goal

Train Computers to model realistic virtual-human motions with a focus on hand-object interactions.

Why?

- Applications in various fields:
 - Entertainment, Games, Movies
 - Architecture, Healthcare, Education
- Answer the demand for modelling human motions:
 - Fast
 - Cost-effective
- Computers better understanding human

Problems

Separating **hands** and **objects** from the body motions and vice versa

Available datasets:

- Body, no hands or objects
- Body + objects, no hands
- Hands + objects, no body
- No accurate ground truth motions

[Araujo et al. CVPR'2023]

[Kratzer et al. RAL 2020]

[Hampali et al. CVPR'20]

[Mandery et al. T-RO'16]

Motion generation methods:

- Body in "isolation", no interactions
- Body + objects, no hands
- Hands + objects, no body

[Li et al. Sigasia'2023]

[Petrovich et al. ICCV'21]

[Mir et al. 3DV'2024]

[Starke et al. TOG'19]

What are the challenges?

Intro

Interactions are essential part of human motions - high accuracy

Primary tools for interactions \rightarrow Hands

Hands are:

- Dexterous \rightarrow Fast or slow motions
- High DOF \rightarrow Diverse and complex motions
- Small \rightarrow Are often occluded during interactions

Therefore:

- Challenging to track them \rightarrow Datasets
- Hard to generate their motion accurately \rightarrow Modelling

Complete Human Motion

Human Motion: Body and Hands together

Our Contributions

Human-Object Interaction

15

Our Contributions

Our Contributions

GRAB

GRIP

Conc

GRAB: A Dataset of Whole-Body Human Grasping of Objects

A Dataset of **Whole-Body** Human Grasping of Objects

for Hand-Object Grasping

Generating **Interaction Poses** Using Spatial Cues and Latent Consistency

GRAB: A Dataset of Whole-Body Human Grasping of Objects

Omid Taheri, Nima Ghorbani, Michael J. Black, Dimitrios Tzionas ECCV 2020

Problems

GRAB

Conc

Modelling Human-Object interactions requires DATA!

[Hampali et al. CVPR'20]

[Mandery et al. T-RO'16]

[Kratzer et al. RAL 2020]

Objective

Fill the gap by capturing:

- Accurate **whole-body** motions
- Finger movement and facial expressions
- Accurate objects meshes and poses
- Different motion intents

Conc

Intro

GRAB

GOAL

Capturing Accurate Bodies

Body Shape

- Accurate body shape (high-res scanner)
- SMPL-X [1] expressive statistical body model

Body Motion

- Accurate MoCap system (Vicon)
- Rich minimally-intrusive marker set:
 - 99 markers on body
 - 14 markers on the face
 - 15 markers on each hand

Conc

Intro

GRAB

GOAL

Capturing Objects

Object Shape:

- 3D print objects of ContactDB [2]
- 51 objects

Object Motion:

- Glue 1.5mm-radius markers
- At least 8 markers per object
- Accurate MoCap system (Vicon)

Intro

GRAB

GOAL

GRIP

From Markers to 3D Surface

- Track body and object markers
- Label MoCap data (marker IDs)
- Adapt MoSh++ [3] to get body, face and hands surface
- Rigidly fit object meshes to object markers

Conc

Intro

GRAB

GRAB Motions

Intro

R

GRAB

GOAL

GRIP

GRAB

- "Whole-body" grasps
- Detailed body and object 3D meshes
- Accurate hand and face motions
- Accurate contact areas

Intro

GRAB

GOAL

GRIP

Contact Analysis

Integrate binary contacts over time - "heatmaps"

- Important areas for interaction (frequent and rare contact areas)
- Analysis of human grasps

Conc

Intro

GRAB

GOAL

Dataset Stats

- Captures 10 human subjects:
 - \circ 5 males
 - \circ 5 females

- Captures 4 different motion intents:
 "Use", "Pass", "Lift", "Off-Hand"
- Includes more than 1.6M frames in total
- Includes roughly 1M contact frames

 \mathbf{A}

Intro

GRAB

GOAL

GRIP

Generating Grasps

Goal:

Given a 3D unseen object as input \rightarrow Can we generate various 3D hands grasping it?

GOAL

GRIP

Conc

Representing hands \rightarrow MANO[4] hand model

Input

GrabNet: A Generative Model for 3D Hand Grasps

Results - Unseen Objects

36

Intro

R

GRAB

GOAL

GRIP

GrabNet Evaluation

Perceptual study:

- 5-level Likert score to:
 - "How realistic are the generated grasps?"
 - 1 \rightarrow "Very Unrealistic"
 - $5 \rightarrow$ "Very Realistic"

		А	MT		Vertices	Contact
	Gener	ration	Grou	nd Truth	cm	%
Test Object	mean	std	mean	std	N=100	N=20
binoculars	4.09	0.93	4.27	0.80	2.56	4.00
camera	4.40	0.79	4.34	0.76	2.90	3.75
frying pan	3.19	1.30	4.49	0.67	3.58	4.16
mug	4.13	1.00	4.36	0.78	1.96	3.25
toothpaste	4.56	0.67	4.42	0.77	1.78	5.39
wineglass	4.32	0.88	4.43	0.79	1.92	4.56
Average	4.12	1.04	4.38	0.77	2.45	4.18
WALTER	21'1	T'0.4	1.00	0.11	04.2	4'10

Intro

GRAB

GOAL

GRIP

GOAL: Generating 4D Whole-Body Motion for Hand-Object Grasping

Omid Taheri, Vasileios Choutas, Michael Black, Dimitrios Tzionas CVPR 2022

GRIP

Objective

Common step for most interactions \rightarrow Walking up to and grasping the object.

Generate full-body motions that:

- Grasp unseen 3D objects
- Have realistic hand grasps
- Realistic foot-ground contact
- Natural head orientation for grasping

Intro

GRAB

GOAL

GRIP

GOAL Setup

1. Full-body Grasp

2. Body Motion

Intro

GRAB

GOAL

GRIP

GNet Architecture

To generate the end frame's full-body grasp.

Inputs

Outputs

Intro

GRAB

GOAL

GRIP

GNet – Key Idea

Interaction Features SMPL-X Parameters **Optimized Grasp** ${\hat d}^h$ hΘ

Intro

GRAB

GOAL

GRIP

GNet – Optimization Results

Before Optimization

After Optimization

Intro

GRAB

GOAL

GRIP

MNet Architecture

 $10\ Future\ Frames$ **5** Past Frames MNet X_p X_f $Goal\ Frame$ TrueFalse $\|\overrightarrow{v_g^h} - \overrightarrow{v_t^h}\| < 1 \ mm$ Optimization $\|\overrightarrow{v_g^h} - \overrightarrow{v_t^h}\| < 10~cm$ TrueFalseSTOP

Intro

GRAB

GOAL

GRIP

MNet - Results

Intro

GRAB

GRIP

GOAL

Evaluations

Intro

GRAB

GOAL

GRIP

GRIP: Generating Interaction Poses Using Spatial Cues and Latent Consistency

Omid Taheri, Yi Zhou, Dimitrios Tzionas, Yang Zhou, Duygu Ceylan, Soren Pirk, Michael J. Black 3DV 2024

GOAL

GRIP

Goal

Given a sequence of **body** and **object motion** \rightarrow Accurately generate *interacting-hand poses*

Why?

The combination of body and hands has been overlooked in datasets & motion modelling:

- Add hands to new or previous datasets
- Refine the hands generated/reconstructed using other models

Spatio-Temporal Features-via Hand Sensors

Extract rich features:

- Based on the relative body and object motion
- Bidirectional: body ↔ object
- Generalizable

Ambient Sensor

Proximity Sensor

GRAB

GOAL

GRIP

Method - Architecture

Arm Denoising

Hand Inference

Intro

GRAB

GRIP

Method - Architecture

Method – CNet

Goal:

- Generate hand motions in real-time: frame by frame
- Smooth and consistent motion

Intro

GRAB

GOAL

GRIP

Method – CNet

Intro

GRAB

GOAL

GRIP

Conc

66

Latent Temporal Consistency (LTC)

Method – RNet

Method – ANet

Intro

GRAB

Intro

GRAB

GOAL

GRIP

Evaluations

Method	MPVPE (mm) \downarrow		MPJPE (mm) ↓		CC (mm) ↓	
	R-Hand	L-Hand	R-Hand	L-Hand	R-Hand	L-Hand
		I	Hand Senso	ors Ablatio	n	
GRIP (w/o Ambient)	9.56	6.72	7.08	4.99	15.03	9.48
GRIP (w/o Proximity)	9.62	6.82	7.11	5.09	15.64	9.10
	La	tent Temp	oral Consis	stency (LT	C) Evaluati	ion
GRIP (w/o Consist.)	8.17	6.18	5.99	4.53	13.01	7.66
GRIP (output Consist.)	9.31	7.11	6.81	5.31	13.21	8.18
GRIP (Voxel-grid)	8.36	6.54	6.60	4.75	11.35	6.87
GRIP (w/o RNet)	8.19	6.58	6.10	4.95	11.44	7.03
GRIP (fullmodel)	7.88	6.17	5.85	4.62	10.56	6.25

Intro

GRAB

GOAL

GRIP

Evaluations

Mathed	MPVPE (mm) ↓		MPJPE (mm)↓		$CC (mm) \downarrow$		
Method 4	R-Hand	L-Hand	R-Hand	L-Hand	R-Hand	L-Hand	
	Hand Sensors Ablation						
GRIP (w/o Ambient)	9.56	6.72	7.08	4.99	15.03	9.48	
GRIP (w/o Proximity)	9.62	6.82	7.11	5.09	15.64	9.10	
	La	tent Temp	oral Consi	tency (LT)	C) Evaluat	ion	
GRIP (w/o Consist.)	8.17	6.18	5.99	4.53	13.01	7.66	
GRIP (output Consist.)	9.31	7.11	6.81	5.31	13.21	8.18	
GRIP (Voxel-grid)	8.36	6.54	6.60	4.75	11.35	6.87	
GRIP (w/o RNet)	8.19	6.58	6.10	4.95	11.44	7.03	
GRIP (fullmodel)	7.88	6.17	5.85	4.62	10.56	6.25	

Input

GOAL

GRIP

Results

GRIP

Conc

Input

76

Takeaways

- Data is not just for you, it's for the community:
 - \circ $\,$ Consider what people would need in 5-10 years $\,$
- Big data matters BUT right features matter more:
 - Key to generalization
- Accuracy in interactions is crucial refinement:
 - Feedback Loop
 - \circ Optimization
 - $\circ \quad \text{Diffusion Models}$
- Interactions need different 3D representation:
 - Different from general 3D object representations
 - Focused on spatial information between body & objects

GOAL

Limitations & Future Work

Generating Interaction Poses Using Spatial Cues and Latent Consistency

84

Limitations & Future Work

A Dataset of Whole-Body

Human Grasping of Objects

Generating **4D Whole-Body Motion** for Hand-Object Grasping Generating **Interaction Poses** Using Spatial Cues and Latent Consistency

GRIP

Generate full interaction motions:

 \circ Action Labels - Text Descriptions

Scene Interaction & Navigation

Interaction with large objects

Human-Object-Interaction Reconstruction from Videos

Use LLMs for Interaction Motion Synthesis

Thank You!