CVPR JUNE 19-24 2022 I O II I S I A N A

Overview

Objective

- Generate full-body body motion to grasp 3D objects.
- Realistic hand grasps and head orientation.
- ✓ Natural foot-ground contact.

Problem

- High dimensional control problem
- Satisfy complex contact constraints

Limitations of Prior Work

- Non-realistic grasps.
- Bodies in "isolation" without objects.
- Not accurate hand grasping.
- Only hands without the body.

Jointly inferring interaction features and body parameters.

Pickup

Using Interaction-Aware Attention representation.

Image: Construction of the second state of the second s

ECCV 2022 CVPR 2019 **ICCV 2021 TOG 2019**

- Use static grasps and dynamic motions from **GRAB** dataset.
- Generate a realistic **Grasping Pose** using **GNet**. • Infill **the motion** between the start and Grasping Pose with **MNet**.

- SMPL-X predictions are good but only approximate. NNs learn more accurate Interaction features than SMPL-X parameters. We use the accurate interaction features to improve the Grasping Pose.

GOAL: Generating 4D Whole-Body Motion for Hand-Object Grasping Vasileios Choutas^{1,3} Michael J. Black¹ Dimitrios Tzionas^{1,2} Omid Taheri¹ ¹Max Planck Institute for Intelligent Systems, ²University of Amsterdam, ³ETH Zürich

¹{otaheri, vchoutas, black}@tue.mpg.de, ²d.tzionas@uva.nl

Method: GOAL

• Interaction-Aware attention representation improves grasps and motion.

- Generate interaction features in addition to SMPL-X parameters.
- Hand-to-object offset vectors (\hat{d}^h)
- Head direction vector (\hat{h})

Interaction-Aware Attention

Novel representation for human-object Interaction

Exponential transformation function on the distances. As input to MNet:

- Reduces foot-sliding
- Improves the motion smoothness
- Results in better grasps

 $d \in \mathbb{R}^D \longrightarrow$ Distance Vector $w \longrightarrow$ Adjustable Parameter

MNet

- Autoregressively generates motion between start and Grasping Pose.
- Guide the hand to the Grasping Pose with optimization.

10 Future Frames

PERCEIVING SYSTEMS MAX PLANCK INSTITUTE FOR INTELLIGENT SYSTEMS

Results

Ratings: $1 \rightarrow Not$ Realistic $5 \rightarrow Very$ Realistic

GNet Evaluation – Before/After Optimization VS GRAB

Metric	GNet	GNet + Opt	Ground-truth [1]
Overall Grasping Pose ↑	3.89 ± 0.93	$\textbf{3.98} \pm 0.94$	3.78 ± 1.06
Foot-Ground Contact ↑	3.98 ± 1.06	$\textbf{4.10} \pm 0.93$	3.82 ± 1.11
Hand-Object Grasp ↑	2.70 ± 1.37	3.63 ± 1.16	$\textbf{3.98} \pm 1.04$
Head Orientation ↑	3.83 ± 1.01	$\textbf{4.01} \pm 0.97$	3.84 ± 1.07
Average ↑	3.60 ± 1.22	$\textbf{3.93} \pm 1.02$	3.86 ± 1.07

MNet Evaluation – After Optimization VS GRAB

Metric	GOAL	Ground-truth [1]
Overall Body Motion ↑	3.74 ± 0.97	4.20 ± 0.90
Foot-Ground Contact ↑	3.88 ± 1.14	4.18 ± 1.05
Final Hand-Object Grasp ↑	3.66 ± 1.05	4.32 ± 0.91
Head Orientation ↑	3.86 ± 1.03	4.18 ± 1.00
Average ↑	3.79 ± 1.05	4.22 ± 0.97

goal.is.tue.mpg.de