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Overview Method: GOAL . Results

Objective : Interaction-Aware Attention

e Use static grasps and dynamic motions from GRAB dataset.

* Generate a realistic Grasping Pose using GNet.

* Infill the motion between the start and Grasping Pose with VINet.

* Interaction-Aware attention representation improves grasps and motion.

Novel representation for human-object Interaction
- Exponential transformation function on the distances.

- As input to MNet:

: « Reduces foot-sliding

* |Improves the motion smoothness

Generateq : - * Results in better grasps
Grasp Generated Motion :

V] Generate full-body body motion to grasp 3D objects.
v] Realistic hand grasps and head orientation.
V] Natural foot-ground contact.
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| s A d € R” — Distance Vector w — Adjustable Parameter
Optimization b L e ~

Problem
 High dimensional control problem
e Satisfy complex contact constraints

Optimization

Limitations of Prior Work "“‘ Yot Start Pose
* Non-realistic grasps. R T Distances Contact \. Ours
* Bodies in “isolation” without objects. S || === e e e e e e e, ., ., ., ..., .- ., .- ... e
 Not accurate hand grasping. M NEt
* Only hands without the body. * Generate interaction features in addition to SMPL-X parameters. * Autoregressively generates motion between start and Grasping Pose.
o Hand-to-object offset vectors (d‘h)  Guide the hand to the Grasping Pose with optli?;?ationﬁ GNet Evaluation — Before/After Optimization VS GRAB
. uture rrames

o Head direction vector (h)

5 Past F'rames

Metric GNet GNet + Opt  Ground-truth [1]
Overall Grasping Pose T 3.89 £0.93 3.98 £ 0.94 3.78 = 1.06
Foot-Ground Contact ¥ 3.98 1.06 4.10 4+ 0.93 3.82 4+ 1.11
Hand-Object Grasp 1 270=x137 3.63x£1.16 3.98 +1.04
Head Orientation 1 3.83£1.01 4.01£0.97 3.84 £1.07
Average 1 3.60+1.22 3.93+1.02 3.86 & 1.07

* SMPL-X predictions are good but only approximate. :
* NNs learn more accurate Interaction features than SMPL-X parameters. :
* We use the accurate interaction features to improve the Grasping Pose. = [

Kick

Stretching Pickup

Key Insights
* Jointly inferring interaction features and body parameters. Inputs
* Using Interaction-Aware Attention representation.

Outputs

Refined E

VINet Evaluation — After Optimization VS GRAB
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Interaction Features : vg — Goal Hand Vertices v! - Current Hand Vertices
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